The mission of CMI has three essential components: commercialization.

The vision of the CMI is to establish an internationally recognized center for developing innovative medical technologies, educating students, and facilitating commercialization.

CMI MISSION

The mission of CMI has three essential components:

• Research: To provide an organizational structure to link engineering faculty, clinicians, and students at the University of Pittsburgh, and to fund early-stage development of innovative biomedical technologies.

• Education: To educate the next generation of innovators in the design, development, and commercialization of medical technologies through classroom and hands-on experiences in cooperation with the schools of Engineering, Health Sciences, Business, and Law.

• Development: To facilitate the translation of innovative biomedical technologies into marketable products, services, and business ventures in collaboration with the University of Pittsburgh Innovation Institute, Clinical Translational Science Institute (CTSI), and the Coulter Translational Research Partnership.

Structure

The CMI promotes collaborations among University of Pittsburgh clinicians and engineers which are likely to result in improvements to healthcare. A multi-disciplinary CMI leadership team is in place to manage the process. Seed money will be available to clinician-engineer teams whose collaborative project proposals are successfully reviewed and approved by CMI.

Educational Program

CMI will offer, through the Swanson School’s Department of Bioengineering, two options for a Professional Masters degree, and a new graduate Certificate in Medical Product Innovation. Additionally, engineering graduate students may participate in courses and innovation projects as part of their dissertation work. Medical students will be able to satisfy School of Medicine research requirements through participation in CMI sponsored projects. Courses in innovation and entrepreneurship already offered through the Swanson School of Engineering, the Katz School of Business, and the School of Law will be available to all students interested in medical innovation. Multi-disciplinary student teams (including graduate students in engineering and business, as well as law and medicine) will work with engineering faculty, clinicians, and industry advisors to develop innovative medical technologies through the prototype stage.

Visit us at engineering.pitt.edu/cmi
The University of Pittsburgh’s Center for Medical Innovation (CMI) awarded grants totaling $60,000 to three research groups through its 2020 Round-2 Pilot Funding Program for Early Stage Medical Technology Research and Development. The latest funding proposals include a new antiviral coating for PPE, a virus containment chamber for patients being intubated, and a device that can capture hemoglobin released into the blood plasma.

CMI, a University Center housed in Pitt’s Swanson School of Engineering, supports applied technology projects in the early stages of development with “kickstart” funding toward the goal of transitioning the research to clinical adoption. Proposals are evaluated on the basis of scientific merit, technical and clinical relevance, potential health care impact and significance, experience of the investigators, and potential in obtaining further financial investment to translate the particular solution to healthcare.

“This is our ninth year of pilot funding,” said Alan D. Hirschman, PhD, CMI Executive Director. “Since our inception, more than $1.4 million from external funding sources and from the Swanson School of Engineering has been invested in early stage medical technologies. Many of these technologies have the potential to significantly improve the delivery of health care and several new companies have resulted from the program, which has successfully partnered UPMC’s clinicians and surgeons with the Swanson School’s engineering faculty.”

2020 ROUND-1 CMI PILOT FUNDING AWARDEES

AWARD 1
Paul Leu, PhD
Associate Professor, Industrial Engineering, Swanson School of Engineering
Robert Shanks, PhD
Associate Professor, Department of Ophthalmology, UPMC
Eric Romanowski, MS
Research Instructor, Ophthalmology, University of Pittsburgh School of Medicine
FOR: Wash-Stable and Durable Anti-Virofouling Coatings for Reusable Medical Textiles
Development of an anti-viral coating for reusable PPE.

AWARD 2
David Turer, MD, MS
Resident, Plastic Surgery, UPMC
Heng Ban, PhD
Richard K. Mellon Professor, Mechanical and Materials Science, Swanson School of Engineering
J. Peter Rubin, MD, FACS
Chair, Department of Plastic Surgery, UPMC
FOR: Individual Biocontainment Unit for Reducing Viral Transmission to Healthcare Workers and Patients
Development of a virus-removing chamber for intubated patients.

AWARD 3
Nahmah Kim-Campbell, MD, MS
Assistant Professor, Critical Care Medicine and Pediatrics, UPMC
Ryan Orizondo, PhD
Assistant Professor, Bioengineering, Swanson School of Engineering
William Federspiel, PhD
John A. Swanson Professor of Bioengineering, Swanson School of Engineering
FOR: Targeted Removal of Cell-Free Plasma Hemoglobin in Extracorporeal Therapies
Development of a device capable of filtering plasma hemoglobin released during hemolysis.

Details of this program and other CMI related information can be found at engineering.pitt.edu/cmi