Pitt | Swanson Engineering

Computational Transport Phenomena Laboratory

The primary objective of the Computational Transport Phenomena Laboratory is to conduct theoretical research in fluid mechanics, combustion, heat and mass transfer, applied mathematics, and numerical methods. The emphasis of current research in this laboratory is on "understanding physics" rather than "developing numerical algorithms." Several areas of current investigations are turbulent mixing, chemically reacting flows, high-speed combustion and propulsion, transition and turbulence, nano-scale heat transfer, magnetohydrodynamics, and plasma physics. The numerical methodologies in use consist of spectral methods (collocation, Galerkin), variety of finite difference, finite volume and finite element schemes, Lagrangian methods, and many hybrid methods such as spectral-finite element and spectral-finite difference schemes. The laboratory is equipped with high-speed mini-supercomputers, graphic systems, and state-of-the-art hardware and software for "flow visualization." Most computations require the use of off-site supercomputers (mostly parallel platforms), for which high-speed links are available.