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ARTICLES

Transforming Physics Education

By using the tools of physics in their teaching, instructors can move students
from mindless memorization to understanding and appreciation.

Carl Wieman and Katherine Perkins

The science community needs to change science education to make it effective and
relevant for a much larger fraction of the student population than in the past. This need
is the result of significant changes in the environment and society over the past several
decades. First, society now faces critical global-scale issues that are fundamentally
technical in nature—for example, climate change, genetic modification, and energy
supply. Only a far more scientifically and technically literate citizenry can make wise
decisions on such issues. Second, modern economies are so heavily based on technology
that having a better understanding of science and technology and better technical
problem-solving skills will enhance a person's career aspirations almost independent of
occupation. Furthermore, a modern economy can thrive only if it has a workforce with
high-level technical understanding and skills.

As a community, we must now ask ourselves, "How successfully are we educating all
students in science?" This objective is very different from in the past, when the goal of
science education was primarily to train only the tiny fraction of the population that would
become future scientists. The new, broader educational need does not eliminate the need
to educate future generations of scientists. However, improving science education for all
students is likely to produce more and better-educated scientists and engineers. This
claim is supported by data showing that the fraction of students who complete a physical
science major in college is determined more by the students' ability to tolerate traditional

physical science instruction than by their ability to do science.1

For a variety of reasons, the physics community should and can take the lead in
providing an effective and relevant science education for all students. Moreover, this is in
their enlightened self-interest. A better-educated citizenry would better appreciate the
value of supporting physics research.

But what specifically do we mean by effective physics instruction? It is instruction that
changes the way students think about physics and physics problem solving and causes

them to think more like experts—practicing physicists.2 Experts see the content of
physics as a coherent structure of general concepts that describe nature and are
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Figure 1

physics as a coherent structure of general concepts that describe nature and are
established by experiment, and they use systematic concept-based problem-solving
approaches that are applicable to a wide variety of situations. Most people ("novices")
see physics more as isolated pieces of information handed down by some authority and
unrelated to the real world. To novices, "learning" physics simply means memorization of

information and of problem-solving recipes that apply to highly specific situations.2

Research on traditional instruction

We now examine how well traditional instruction does at getting the average student to
think like an expert. Traditional science instruction is used in the overwhelming majority
of college physics courses and has familiar characteristics. Most of the class time involves
the teacher lecturing to students; assignments are typically back-of-the-chapter-type
homework problems with short quantitative answers, and grades are largely based on
exams containing similar problems. Over the past couple of decades, physics education
researchers have studied the effectiveness of such practices. (For reviews with useful
citations, see references 3–5 and the article by Edward Redish and Richard Steinberg,
PHYSICS TODAY, January 1999, page 24). In this section, we present representative
examples of research on three quite different but important aspects of learning:
conceptual understanding, transfer of information, and basic beliefs about physics.

The first aspect of learning, conceptual understanding, has been extensively studied3,4

and is particularly relevant because the great strength of physics is that a few
fundamental concepts can explain a vast range of phenomena. Most studies have looked
at students' learning of basic physics concepts in traditional introductory physics courses.
The results are remarkably consistent. We will discuss two examples, one from
mechanics and one from electricity.

Physics education researchers have developed
several carefully constructed tests that
explore student understanding of the basic
concepts of force and motion. These tests
have been administered at the beginning and
end of many, many courses across the
country. The oldest and best-known test is

the Force Concepts Inventory (FCI).6 Figure 1
shows a sample question from the FCI and results compiled by Richard Hake from data

on 62 courses (14 traditional).7 As shown in the figure, students receiving traditional
instruction master, on average, less than 30% of the concepts that they did not already
know at the start of the class. The result is largely independent of lecturer quality, class
size, or institution.

Eric Mazur, a highly renowned teacher at Harvard
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Figure 2

Figure 3

Eric Mazur, a highly renowned teacher at Harvard
University, has studied students' understanding of
concepts in electricity. Motivated by FCI results, Mazur
gave his students an exam with a series of paired

problems8 such as those shown in figure 2. His and
similar data show that students are able to correctly
answer traditional test questions and complete traditional
courses without understanding the basic physics concepts
or learning the useful concept-based problem-solving

approaches of physicists.

We next examine a second aspect of learning, simple transfer of
information and ideas from teacher to student in a traditional
physics lecture. The following example is from data collected in
our own introductory physics class for non-science majors. After
explaining the physics of sound in our usual incredibly engaging
and lucid fashion, we brought a violin into class. We explained
how, in accordance with the physics we had just explained, the
strings do not move enough air to create the sound from the
violin. Rather, the strings cause the back of the violin to move via the soundpost, and
thus it is the back of the violin that actually produces the sound that is heard. Fifteen
minutes later, we asked the students the multiple choice question shown in figure 3, "The
sound you hear from a violin is produced mostly by . . ." As illustrated in the figure, only
10% gave the correct answer. We have seen that this 10% level of retention after 15
minutes is typical for a nonobvious or counterintuitive fact that is presented in a lecture,
even when the audience is primarily physics faculty and graduate students.

When we have asked physics teachers to predict the student responses to the violin
question, nearly all of them greatly overestimate the fraction of students who answer
correctly. Many physics faculty go so far as to simply refuse to believe the data. For
readers who may share their skepticism, we briefly mention two other studies. Redish had

students interviewed just as they came out of his lecture.4 The interviewer simply asked
the students, "What was the lecture about?" The students were unable to recall anything

beyond the general topic. In a more structured study,9 Zdeslav Hrepic and coworkers
gave 18 students six elementary questions on the physics of sound. Immediately after
attempting to answer the questions, the students were told that they were to get the
answers to the six questions from watching a 14-minute commercially produced
videotaped presentation given by a nationally renowned physics lecturer. For most of the
six questions, no more than one student was able to learn the correct answer from the
lecture, even under these highly optimized conditions!

When presented with these data, teachers often ask, "Does this mean that all lectures are
bad?" The brief answer is no, but to be effective, lectures must be carefully designed
according to established, but not widely recognized, cognitive principles about how people

learn.10

Our third topic is research on students' general beliefs about physics and problem solving
in physics. Research groups including our own have studied these beliefs through

extensive interviews and well-tested surveys.11 These surveys measure where students'
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extensive interviews and well-tested surveys.11 These surveys measure where students'
thinking lies on the expert–novice scale discussed above, and how their views are
changed by taking a physics course. The surveys have now been given to many
thousands of students at the beginning and end of introductory physics courses at many
different institutions. After instruction, students, on average, are found to be less expert-
like in their thinking than before. They see physics as less connected to the real world,
less interesting, and more as something to be memorized without understanding. This is
true in almost all courses, including those with teaching practices that have substantially
improved conceptual mastery. If it is any consolation to physics teachers, we have
measured similar results from introductory chemistry courses.

The examples we have discussed are just a few from a large body of research on the
effectiveness of the traditional approach to teaching physics. The definitive conclusion is
that no matter how "good" the teacher, typical students in a traditionally taught course
are learning by rote, memorizing facts and recipes for problem solving; they are not
gaining a true understanding. Equally unfortunate is that in spite of the best efforts of
teachers, typical students are also learning that physics is boring and irrelevant to
understanding the world around them.

A better approach

Is there a way to teach physics that does not produce such dismal results for the typical
student? Our answer, and that of many others doing research in physics education, is
unequivocally yes. Many of the same methods that have worked so well for advancing
physics research also improve physics education. These methods include basing teaching
practices and principles on research and data rather than on tradition or anecdote; using
new technology tools effectively; and disseminating and copying proven results.
Considerable evidence shows that this approach works. Classes using research-based
teaching practices have shown dramatic increases in retention of information, doubling of
scores on the FCI and other conceptual tests, and elimination of negative shifts in beliefs
about physics.

Research on learning has provided results that both explain many of the disappointing
results of traditional instruction and provide guidance as to how to improve. We present
three examples here, chosen in part because they are relatively easy to use throughout
the standard curriculum and classroom setting. Numerous other examples, including
many about specific physics topics, are given in references 3–5.

Cognitive research shows that the amount of new material
presented in a typical class is far more than a typical person can
process or learn. People's brains function in a way somewhat
analogous to a personal computer with very limited random-
access memory. The more things the brain is given to process at
the same time—the cognitive load—the less effectively it can

process anything12 (see figure 4). Any additional cognitive load, no
matter what form it takes, will limit people's abilities to mentally
process and learn new ideas. This is one of the most well-
established and widely violated principles in education, including
by many education researchers in their presentations.
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by many education researchers in their presentations.

Cognitive load has important implications for both classroom teaching and technical talks.
To maximize learning, instructors must minimize cognitive load by limiting the amount of
material presented, having a clear organizational structure to the presentation, linking
new material to ideas that the audience already knows, and avoiding unfamiliar technical
terminology and interesting little digressions.

Expert competence5,12 is a primary goal of education and is another area in which
research has provided useful insights. Expert competence has been found to have
roughly two parts: factual knowledge and an organizational structure that allows the
expert to effectively retrieve and apply those facts. Organizing physics ideas around
general concepts is part of building such a structure. If students do not have a suitable
organizational structure, simply pouring additional facts on them may actually deter
learning.

To move a student toward expert competence, the instructor must focus on the
development of the student's mental organizational structure by addressing the "why"
and not just the "what" of the subject. These mental structures are a new element of a
student's thinking. As such, they must be constructed on the foundation of students' prior

thinking and experience.5,12 This prior thinking may be wrong or incorrectly applied, and
hence must be explicitly examined and adequately addressed before further progress is
possible. The physics education research literature can help instructors recognize and

deal with particular widespread and deeply ingrained misconceptions.3,4 In summary,
expert competence is likely to develop only if the student is actively thinking and the
instructor can suitably monitor and guide that thinking.

Our final example of useful research concerns students' beliefs. Students' beliefs about

physics and how it is learned are important.1,11 They affect motivation, approaches to
learning and problem solving, and, not surprisingly, choice of major. As we noted earlier,
teaching practices influence students' beliefs, usually by making them more novice-like.
Presenting mechanics in terms of general concepts and the motion of abstract items such
as blocks on frictionless ramps can inadvertently teach many students that these
principles do not apply to real-world objects. Assigning problems that are graded strictly
on a final number, or that can be done by plugging the correct numbers into a given
procedure or formula, can teach students that solving physics problems is only about
memorization and coming up with a correct number—reasoning and seeing if the answer
makes sense are irrelevant. The good news is that courses with rather modest changes to

explicitly address student beliefs have avoided the usual negative shifts.11 Those changes
include introducing the physics ideas in terms of real-world situations or devices with
which the students are familiar; recasting homework and exam problems into a form in
which the answer is of some obvious utility rather than an abstract number; and making
reasoning, sense-making, and reflecting explicit parts of in-class activities, homework,
and exams.

New educational technology

Utilizing principles established by educational research can greatly improve physics
education. Technology can make it easier to incorporate these principles into instruction.
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education. Technology can make it easier to incorporate these principles into instruction.
For example, online surveys and student–faculty e-mail are rather simple ways to
enhance communication, thereby helping faculty understand and better guide student
thinking. Here we will discuss a couple of more novel technologies—personal electronic
response systems and interactive simulations. These technologies are relatively simple
and inexpensive, and we have found them to be pedagogically powerful and easy to
incorporate into the standard curriculum.

A variety of commercial vendors sell personal electronic response systems, or "clickers"
as they're usually known to our students. The various systems are all based on a similar
idea. Each student owns a clicker and uses it to answer multiple-choice questions asked
during class. A computer records each student's answer. After all the responses are in,
the system displays the answers in a histogram like that given in figure 3. Software
grades the responses and allows the instructor to later examine each student's answer. A
clicker system for a classroom of about 200 seats requires several receivers, a computer,
and a projector; the total cost is about $5000.

If used properly, clickers can have a profound impact on the students' educational
experience. The value of the clicker is that it provides a way to quickly get an answer for
which the student is accountable, and that answer is anonymous to the student's peers.
While the clickers provide some measure of what students are thinking, it is the specifics
of the implementation—the change in the classroom dynamic, the questions posed, and
how they are followed up—that determines the learning experience. These specifics need
to be guided by an understanding of how people learn. Instructors must also make sure
their students understand how and why the clickers are being used. If students perceive
clickers merely as a way to give more tests, rather than as a method to improve
engagement and communication, the clickers will be resented.

We have found that the biggest impact of clickers comes when they are used with a
combination of practices that others have developed. We randomly assign students to
groups the first day of class (typically three or four students in adjacent seats). Each
lecture is designed around a series of about six clicker questions that cover the key
learning goals for that day. Although multiple-choice questions may seem limiting, they
can be surprisingly good at generating the desired student engagement and guiding
student thinking. They work particularly well if the possible answers embody common
confusions or difficult ideas. Useful clicker questions and valuable guidance on writing

effective questions are now available.8,13

It is important to actively encourage students to talk to each other about the questions.
We do this, sometimes after they have answered individually, by requiring our groups to
come to a consensus answer, enter it with their clickers, and be prepared to offer
reasons for their choice. Those peer discussions are the times when most students are
doing the primary processing of new ideas and problem-solving approaches. Critiquing
each other's ideas to arrive at a consensus answer also enormously improves their ability
to carry on scientific discourse. Finally, the discussion helps them to learn to evaluate
and test their own understanding. Experts have the ability to monitor and test their own
thinking on an ongoing basis by asking questions like "Does this make sense?" and "How
can I test this?" However, it is very difficult for students to learn this skill without some
amount of social interaction and feedback. The student discussions in our classes are



02/04/2006 12:05 PMTransforming Physics Education - Physics Today November 2005

Page 7 of 13http://www.physicstoday.org/servlet/PrintPT

Figure 5

amount of social interaction and feedback. The student discussions in our classes are

inspired by the peer instruction technique popularized by Mazur.8 The clickers and
consensus groups just provide a way to enhance the process, particularly for the less
active or less assertive students.

A major value of clickers is how they can enhance communication in the classroom. The
sometimes painful feedback provided to the instructor by histograms like figure 3 is the
most obvious. However, there are other, more valuable forms of feedback. By circulating
through the classroom and literally listening in on the consensus-group discussions, the
instructor can quickly learn particular points of student understanding and confusion.
Then in the follow-up lecture or whole-class discussion, the instructor can directly target
those specific items of confusion. Perhaps even more important than the feedback to the
instructor is the feedback provided to the students through the histograms and peer
discussions. Students become much more invested in their own learning. One
manifestation of this change is that we now receive many more substantive questions,
and they are asked by a much broader distribution of students; 10–15 questions per
class period is typical.

Clickers can also be useful in other ways. For instance, we use them to quickly survey the
range of student backgrounds and to quiz students at the start of class to check that
they've done the assigned reading. Ensuring background reading considerably facilitates
useful in-class discussions.

The reality of virtual physics

Interactive simulations that run through a regular Web
browser can be highly effective. Using an existing simulation
also often takes less preparation time than more traditional
materials. Our research group has created and studied the

effectiveness of about 45 simulations.14 We have explored
their use in lectures, as part of homework problems, and as
laboratory replacements or enhancements. Figure 5 shows our
circuit construction kit simulation. This simulation allows one
to build arbitrary circuits involving lifelike resistors, light
bulbs, wires, batteries, and switches; measure voltages and currents with realistic
meters; and see light bulbs lighting up. It also shows what cannot normally be seen—
electrons that flow around the circuit with their velocity proportional to current,

immediately responding to any changes in circuit parameters. Our studies14 have found
this simulation helps students understand the basic concepts of electric current and
voltage and, when substituted for an equivalent lab with real components, improves how
well students can build and explain real-life circuits.

Many physicists find it quite mysterious and somewhat disturbing that carefully
developed simulations are more educationally effective than real hardware. Both the
efficacy of simulations and the physicists' discomfort can be understood by recognizing
the difference between how the beginning student and the expert instructor perceive the
same situation. These perceptual differences are readily apparent in our testing of

simulations and in other research on the effectiveness of lecture demonstrations.15
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A real-life demonstration or lab includes enormous amounts of peripheral information that
the expert instructor filters out without even thinking about it. The student has not
learned what can be filtered out, and so all this other information produces confusion and
a much heavier cognitive load. The student's attention is often on things the instructor
doesn't even notice, because they are irrelevant. For example, in a real circuits lab,
inexperienced students will often spend considerable time and concern on the significance
of the different colors of the plastic insulation on the wires.

A carefully designed computer simulation can maintain connections to real life but make
the student's perception of what is happening match those of experts. This is done by
enhancing certain features, hiding others, adjusting time scales, and so on, until the
desired student perception is achieved. Simulations also can provide visual
representations that explicitly show the models that experts use to understand
phenomena that are not directly visible, such as the motion of electrons. It is likely that
both features are important in explaining the observed benefits of simulations.

The educational importance of recognizing and dealing with differences between student
and expert thinking goes well beyond the use of simulations. An apt metaphor is that of
the student and the expert instructor separated by the mental equivalent of a canyon;
the function of teaching is to guide the student along the path that leads safely and
effectively across the canyon to the nirvana of expert-like thinking. Guidance that ignores
the student's starting point or that is interpreted differently than intended usually just
sends the student over a cliff. But education research, careful measurement, and new
technology make it possible to guide most students safely along the path toward a true
understanding and appreciation of physics.

We are pleased to acknowledge the valuable input from all the members of the University
of Colorado at Boulder physics education research group.

Carl Wieman, corecipient of the Nobel Prize in Physics in 2001 and the Carnegie–CASE
US University Professor of the Year in 2004, is a Distinguished Professor of Physics at the
University of Colorado in Boulder. Katherine Perkins is an assistant professor of physics
attendant rank at the University of Colorado.
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Figure 1. Students master relatively few concepts in physics courses using traditional
instruction. The histogram shows, for the Force Concepts Inventory (FCI), the average
normalized learning gain—that is, the fraction of the concepts that students learned
that they did not already know at the start of the course. Results from 14 traditional
courses are in red, and results from 48 courses using a wide variety of interactive-
engagement techniques are shown in green. Superimposed on the histogram are data
(blue arrows) from two large lecture courses that use well-tested research-based

practices.16 The inset shows a figure accompanying a typical FCI question: Students
are asked which path the ball will follow upon exiting the tube. (Adapted from ref. 7.)
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Figure 2. Paired problems compare students' ability to calculate quantitative answers
with their conceptual understanding. (a) Students were asked, "For the circuit shown,
calculate (a) the current in the 2-Ω resistor and (b) the potential difference between
points P and Q." The average score of 69% on the question indicates that most of
them were able to calculate the currents and voltages in this moderately complex DC
circuit. (b) Those same students performed much worse (average score of 49%)
when asked to explain what happens qualitatively to, for instance, the brightness of
these light bulbs and the current drawn from the battery when you close the switch
S—questions that seem far simpler to any physicist. The message is that students can
answer traditional test questions without really understanding basic physics concepts
or mastering concept-based problem-solving approaches. (Adapted from ref. 8, with
permission of the publisher.)
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Figure 3. Counterintuitive facts are not retained by lecture students. Fifteen minutes
after being explicitly told that it is the back of the violin that produces the sound,
students were given the boxed multiple-choice question. The histogram of their
responses shows that only 10% answered correctly.
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Figure 4. Students in lecture are apt to suffer from cognitive overload.



02/04/2006 12:05 PMTransforming Physics Education - Physics Today November 2005

Page 13 of 13http://www.physicstoday.org/servlet/PrintPT

Figure 5. The circuit construction kit is a simulation that allows students to build
virtual circuits containing a number of different elements. A pedagogically useful
feature of the simulation is that it displays motion of the electrons, shown here in
blue. Students who work with the interactive simulation are better able to understand
and build real-life circuits. The simulation and many others are available at the
Physics Education Technology website, ref. 14.

copyright © American Institute of Physics 


