Towards Using Microbes for Sustainable Construction Materials: a Feasibility Study

Sarah–Jane Haig^{1,2}, Steven Sachs¹, and Max Stephens¹

¹Department of Civil & Environmental Engineering,

²Graduate School of Public Health, University of Pittsburgh, PA, USA

THE PROBLEM

 Reinforced concrete is susceptible to damage.

- Current repair strategies include cementitious patching and/or chemical treatment.
 - Expensive: estimated to cost \$18-21 billion per year
 - Causes pollution issues

A POTENTIAL SOLUTION: BIOCONCRETE

BIOINSPIRED SUSTAINABLE CONCRETE

Using & understanding microorganisms & their metabolic processes to repair cracks in concrete is a promising new approach to solve a grand challenge for engineering.

RESEARCH OBJECTIVES

Demonstrate the feasibility of using microbes to provide self-healing properties to RC structures – preventing water and chloride ingress.

APPROACH - TASKS

■ Task A: Literature Review (Milestone 1)

■ Task B: Isolate Microbes from Reinforced Concrete. (Milestones 2 – 4)

Task C: Development & Evaluation of Concrete Mixes. (Milestones 5-7)

Task D: Bench-Scale Self-Healing & Leaching Tests. (Milestones 8 and 9)

SCHEDULE

- Starting May 13th
- 2 students over the summer will work on Milestones 1 2

APPLICATION OF RESEARCH PRODUCT

- Results from this feasibility study will provide a first step towards the development of a new reinforced concrete design which:
 - Has a longer service life
 - Is more economical
 - Is more environmentally friendly / sustainable

- If feasible, BioConcrete can be scalable for applications to a wide range of infrastructure and buildings
- Results will be used to expand BioConcrete concept to address other durability issues in RC (e.g. corrosion)